CHROM, 8705

COMPUTERIZED DATA ANALYSIS OF AMINO ACIDS IN PHYSIOLOGIC FLUIDS

JAMES H. BROWN, SHERRY WALKER, LEAH CASTO and R. RODNEY HOWELL

Department of Pediatrics, The University of Texas Health Science Center, The Medical School, Houston, Texas (U.S.A.)

(Received August 1st, 1975)

SUMMARY

A Fortran IV computer program is described which identifies, computes, and statistically evaluates amino acid concentrations determined by an automatic amino acid analyzer in physiologic fluids. The program accepts retention time and integrated peak areas from two calibration standards for identification and computational reference. Two internal standards are used to compensate for variations in injector performance and ninhydrin decay. Calibration standard responses are statistically treated to assist in detection of equipment malfunction. The statistical data base is automatically expanded through inclusion of data from normal patients. Amino acid concentrations are printed with appropriate mean and standard deviation values in a format acceptable as a final report.

INTRODUCTION

The use of computers for repetitive calculations such as those required for amino acid analysis has become commonplace. Dedicated computer systems capable of receiving and analyzing data from one or more chromatographs are readily available; alternatively, larger computer systems can be utilized either on-line or through the use of punched cards.

Dedicated and on-line computer systems, of necessity, are matched to the output of the chromatograph and their use may be restricted; nevertheless, a number of papers have been published describing¹⁻⁵ the use of such systems. Exss *et al.*⁶ experienced difficulty in programming a gradient eluting system for identification and computation because of elution time variations with changing amino acid concentrations. Other considerations complicating identification programs include the occurrence of unusual or unexpected peaks, integrator malfunction, and shifts in elution patterns with buffer decay or column changes. These problems can be easily resolved by visual inspection of the chromatographic tracing, and in physiologic samples such inspections are virtually mandatory to detect drug or other abnormal metabolite interference. For these reasons, some workers^{7.8} prefer manual intervention using tape or punched cards which can be modified as necessary before input to a larger more versatile computer. Fox⁷ used such a system to not only identify and compute the concentrations of amino acids in tissues, but to compare concentrations in a number of tissues or perform statistical analyses on the same tissue.

Amino acid analyses in physiologic fluids are usually performed to detect changes in concentrations resulting from some metabolic disturbance whether congenital, dietary, or drug induced. Detection of such changes requires a knowledge of normal variation in the biologic population and the analytical methodology. It is desirable to incorporate statistical analysis as a portion of the computational program to facilitate comparison between groups of individuals and between individuals within a group.

This report describes a Fortran IV program which employs retention time and integrator output from two standard mixtures with two internal standards to identify and compute concentrations of the amino acids in physiologic fluids. Running means and coefficients of variance are printed out for the standards to facilitate detection of equipment malfunction. The computed amino acid concentrations in samples are compared to means and standard deviations for the appropriate age group and sample type (blood, urine, or cerebrospinal fluid). The amino acid concentrations which exceed the mean value, plus two standard deviations, are identified with the factor by which they exceed this value. Samples from normal patients are added to update the statistics and the results are printed in a format acceptable for inclusion in the patient's chart. This program will also compute concentrations of amino acids in protein hydrolysates and is capable of use with multiple amino acid analyzers operating in different modes.

EXPERIMENTAL

The Beckman 121 amino acid analyzer used for the majority of these analyses was operated in an accelerated mode, partially overlapping the basic amino acid output as outlined by Beckman⁹. This analysis program has a 9-h run time using sodium citrate buffers. Twelve-millimeter cuvettes were used to increase sensitivity; effluent optical density was displayed graphically on a Honeywell recorder and quantitatively via an Infotronics CRS 210 integrator with Teletype print out.

Calibration

Physiological amino acid standards (acidic and basic) were obtained from Pierce Chemical Company and diluted to $0.125 \,\mu$ moles/ml with 0.1 N HCl containing norleucine and α -aminoguanidinopropionic acid to give a final internal standard concentration of 12.5 μ g/ml.

Internal standards

Blood serum. Norleucine and α -aminoguanidinopropionic acid were added to sulfosalicylic acid to give a final concentration of $25\mu g/ml$ in 6% sulfosalicylic acid.

Urine. Norleucine and α -aminoguanidinopropionic acid were added to pH 2.2 citrate buffer to give a final concentration of 12.5 μ g/ml.

Citrate buffers. Buffers were prepared from sodium citrate and hydrochloric acid as outlined by Beckman⁹, using thiodiglycol as an antioxidant and pentachlorophenol as a mold inhibitor.

Ninhydrin. Ninhydrin was prepared according to the Beckman protocol⁹, except that titanous chloride rather than stannous chloride was used as an antioxidant.

Sample preparation

Serum and cerebrospinal fluid were mixed with an equal volume of serum internal standard (sulfosalicylic acid). After centrifugation the supernatant was loaded directly into the sampling coils. Urinary creatinine was measured by the Jaffe reaction and diluted, if necessary, with deionized water to a creatinine concentration of approximately 50 mg/100 ml. Two milliliters of the dilute urine were adjusted to pH 10.0 with sodium hydroxide and lyophilized to remove excess ammonia. The residue was dissolved in two milliliters of urinary internal standard (buffer plus norleucine and α -aminoguanidinopropionic acid) and an aliquot loaded into the sampling coils.

Analysis

Chromatography of the amino acids followed the Beckman protocol⁹. Retention times and integrated peak areas from the integrator and the recorder tracing were inspected to assure proper equipment functioning. The integrator output was

STANDARD SUBROUTINE

(Continued on p. 296)

PATIENT SUBROUTINE

Fig. 1.

Fig. 1. (a) "Standard" subroutine. (b) "Patient" subroutine. (c) "Patient" subroutine.

keypunched along with appropriate patient identification data, then presented to the computer for data reduction.

The computer analysis of the output from the automatic amino acid analyzer was designed as a set of two programs and one permanent data file. The programs are used independently, but each uses the permanent data file. This set of programs could be adapted for use on any relatively large computer with capability for permanently storing data on either disks or tapes.

The first program, and the larger of the two, was actually a statistical and bookkeeping package composed of four main subroutines called Initialize, Store, Standard, and Patient; all of them need not be executed each time. This program was designed to create and update the data file. The subroutine "Initialize" erased all storage locations used by the permanent data file. The subroutine "Store" filed information needed by the programs such as names of amino acids and concentration of each amino acid in the standard solution. Subroutine "Standard" using information derived during calibration of the instrument, averaged retention times and integrated values (independently) for two standard chromatograms. These averages were stored for use in identification and quantification of amino acid concentrations in the samples. A running average of these values and their coefficient of variance was computed as an aid in detecting changes in instrumental performance. Fig. Ia is a diagram of this subroutine.

Running average was computed as

 $< X >_{n+1} = (n < X >_n + X_{n+1})/(n + 1)$

where X was either the retention time or integrated value of the peaks and n was the number of samples.

Standard deviation was computed as:

$$\sigma_{n+1} = \sqrt{(\langle X^2 \rangle_{n+1} - \langle X \rangle_{n+1}^2)}$$

where

$$\langle X^2 \rangle_{n+1} = (n \langle X^2 \rangle_n + X^2_{n+1})/(n+1)$$

Coefficient of variance was computed as:

$$V = \frac{\sigma_{n+1}}{X_{n+1}}$$

The fourth part, called subroutine "Patient", considered the sample analysis and is diagrammed in Figs. 1b and 1c. It required entry of information desired for the final report, including patients name, sex, age, hospital number, location (hospital or town), physicians name, sample type (serum, urine, or other), creatinine concentration (if urine), laboratory number, date of receipt, date of analysis, and dilution factor if necessary. These data were followed by retention times and integrator responses for all the peaks in the chromatogram. This subroutine searched through the retention times of the sample and compared them to the known average retention times obtained from subroutine "Standard". Amino acids were identified on the basis of the peak retention times of the sample that closely approximated the known average from the calibration standard. Extra unidentifiable peaks were sorted out and missing amino acids (if any) were identified.

Having identified which amino acids were present, the subroutine computed the quantity of each present in the sample using the following appropriate equation:

$$X_1 = \text{SAMA} \cdot \frac{\text{CON}}{\text{AVEA}} \cdot \frac{\text{INST1}}{\text{INS1}} \cdot \frac{\text{DIL}}{\text{DILST}} \cdot \text{K}$$

or

$$X_2 = \text{SAMA} \cdot \frac{\text{CON}}{\text{AVEA}} \cdot \frac{\text{INST2}}{\text{INS2}} \cdot \frac{\text{DIL}}{\text{DILST}} \cdot \text{K}$$

where

X = amount of amino acid present in sample; 1 = acidic or neutral, 2 = basic amino acid

CON = concentration of amino acid calibration standard (µmoles/ml)

AVEA = the average integrated response value for the calibration standards

INST1 = the average integrated response for the first internal standard

INST2 = the average integrated response for the second internal standard

DILST = the dilution factor of the calibration standard solutions

SAMA = the integrated response for the sample

DIL = dilution factor of the sample

INS1 = the integrated response for the first internal standard in the sample

INS2 = the integrated response for the second internal standard in the sample K = appropriate units for the type of output needed

This program was intended for serum or urine samples obtained from four different age groups and it maintained a running average of the values from all the normal patients to establish a mean or "usual" value for age and type of sample. It also kept an average of all patients including pathological cases as a matter of interest to compare with only normal patient values. The subroutine then computed the standard deviation of the normal values from the mean.

ANALYZED URIVERSITY	QUANTITATIVE BY THE LABOR DEPARTME OF TEXAS HE HOU	AKING ACT ATORY OF A NT OF PED ALTH SCIEN ICAL SCHOO STONTTEXAS	ID ANALYSIS BIOCHEHICAL LATRICS NCE CENTER / DL S	GENETIC	28 For	
GATIONT WANGE			ч	ISBITAI	NG. 7514	15634
SEX	FERALE					02004
AGEE	2 YEARS 0	Konths		LAB NO.	9436F	
PHYSICIAN	DR. HOKELL					
SPECIMIN TYPE:	HERGAGR	CREATIN	NE CONC. 4		PERCENT	
DATE RECEIVED:	45-26-75	DIC	UTION FACTO	R 1.00		
DATE ANALYZED:	66-03-75	TOT	AL NO. OF P	EAKS 40		
	DITCHT					
	PALACHI DECHIT	VALUE	STANGARD	DEAK	BCT	
ANTHO ACTO	HTCPC X/	FOR ACE	DEVTATION	NO.	TTME	APEA
RUTHO RETO	G CREAT.		9634412911			
PHOSPHOSERINE	115.8	176.4	86.2	1	28.0	47525.0
PHOSPHOETHANOLAHINE	42.7	381.8	178.5	2	39.0	18648.8
TAURINE	326.3	488.5	420.7	3	45.0	149496.6
ASPARTIC ACID	36.7	27.8	25.8	4	65.C	22397.0
THREONINE	243.6	249.7	105.2	5	85°8	153171.0
SERINE	593.6	563.3	267+1	6	99 - 8	489562.8
ASPARAGINE	1309.9	562.3	155.2	7	104.8	943832.6
PROLINE	245.4	4.3	24.5	5	129.0	25484.8
GEGIANIC ACLU	\${(•3- @ 0	2848	33.3	46	137+4	31664.4
CLERCELIRE	1070 6	6 76 9 G	60 1.64 C	2.U	1900 B	649 4944968
ALANTNE	1932.00	1342+0	49107 273.0	57	10000	1COL(4946 AGE573.6
A SERTIMANTOTO ACTO	52.9	122.7	58.K	13	175.8	43072360
A-ANTMO-N-RUTYPIC A	692.1	54.2	66.2	1 G	185.0	457678.6
VALTHE	23.3	47.6	50.0	15	269.6	17672.6
CYSTINE	29.7	2.5	5.5	16	223.0	27665.8
METHIONINE	49.3	89.4	100.9	17	265.8	29852.0
ISOLEUCINE	46.1	216.0	89.6	is	269.0	27915.6
LEUCINE	0.0	75.4	62.9	19	275.5	0.0
TYROSINE	147.3	235c1	134.6	20	369.8	102536.0
PHENYLALANINE	74.3	176.8	84.7	21	317.6	476 6 1.0
BETA-ALANINE	0.0	3.6	4. Ū	22	330.5	6.6
B-AMINOISOBUTYRIC A	433.5	949.2	525.6	23	345.0	238437.0
ORNITHINE	251.9	566.6	263.4	24	392-0	221138.0
1-METHYL HISTIDINE	220.4	246+8	185.9	25	416-4	157691-0
LYSINE	156.5	82.7	67.4	26	425.8	174256.0
MISIIDINE	682.0	1164.3	488.8	27	436 e U	782524.0
S-UCININE UTSITATUE	144:	10(e(88.T	100:0 370 T	20	440:U 660.0	1942(0.0
メビルマ しんちいじ しょうしょう しょうしん	2442	0000	にい ゴル セ	67	204+4	しのユアアスもの

CONKENTSE

Fig. 2. Computer output: Patient copy.

The second program was devised in the interest of economy, to protect the statistical data from errors, and to assist in proof reading of data. It is an abbreviated version of the first program using identical techniques for sample analysis, but performing no statistical bookkeeping. It uses the information stored on the permanent data file when needed. The second program produces a very specialized output suitable for inclusion on a patient's chart by a physician.

RESULTS

Fig. 2 represents the computer-generated report. Since it is more rapid and economical to print multiple reports for laboratory and physicians' files than make copies, four copies of the report were printed, followed by the data shown in Fig. 3. The size of the normal population, with which the patient was compared, was listed

PATIENT NAME:

LAB NC. 9436F

THIS PATIENT HAS CONSIDERED ABNORHAL

11 NO. OF HORNAL PATIENTS ACCUMULATED IN THIS AGE GROUP.

THE FOLLOHING HERE IDENTIFIED AS EXTRA PEAKS OR INTERNAL STANDARDS.

RET. TIKE	PEAK AREA	
51.8	4269288.1	UREA
67.0	206764.0	
71.0	522638.0	
171-0	9701.C	
195.0	2449.0	
231,0	4721.0	
250.0	762313.0	FIRST INTERNAL STANDARD
371.0	25478.0	BUFFER GHANGE
383.0	3921.0	
399.0	2659275.0	
461.0	313265.0	
456-0	77676.0	
477.9	146357.0	SECOND INTERNAL STANDARD
487.0	148535.0	
498:0	113496-0	
511.0	169780-0	
549.0	51194.0	

THE FOLLOWING PEAKS EXCEED (HEAN + 2 STD DEVIATIONS)

AMING ACID	PATIENT Result Hicro H/ G Great.	USUAL Value For Age	STANDARD Deviatiok	PEAK NO.	RATIO PAT/ (H+2S)
ASFARAGINE	1309.9	502.3	168.2	7	1.6
PROLINE	243.0	9.3	29.5	8	3.6
A-AMINO-N-BUTYRIG A	692.1	54.2	66.2	24	3.2
CYSTIKE	29.7	2.5	5.5	16	2.2

Fig. 3. Computer output: Evaluation of sample (laboratory only).

SAMPLES
URINE
FOR
INFORMATION
STATISTICAL

NUMBER OF MORHAL PAT	LIENTS AGO	WHULATED II	N EACH AGE GR	:00P.				-
	G 4	T0 M0,	1 NO. A MO.	10	9 9 9). TO rrs.	5 Ag	ts. To HLT
	-		3 ° C		÷	æ		5 - G
ANING AGIO	USUAL VALUE	S'TO DEV	VALUE	570 0EV	USUAL Value	570 06v	USUAL VALUE	510 0EV
PHOSPHOSERINE	126.0	49.6	17.0	0 • 0	5.60	0.0	05.1	29.62
PHOSPHOET MANOLAMINE	1.921	46.4	44.2	0°0	328.0	0° 0	208.0	155.6
IAUKIAE Asparte acti	1120.7	070 N	7.15		9 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		1976.1 4 % - 8	1118.B
THREONINE	156.3	60.6		0.0	270.5		5.52	161.0
SERINE	162.2	50.1	129.1	9.0	6.35.3		874.8	8.555
ASPARAGINE	230.0	56.4	195.4	0.0	020-020	0*0	234.6	387.6
PROLINE	6°-64	61.9	C '8	0.0	8 .8	0"0	0,9	0.0
GLUTANIC ACID	a7.6	2.2	1.54	6 - 6 -	5. • 4 B	0.0	102.2	69.7
7.4 KULL, 140. 21 MC TAF	0 ° 0 7 7 7 9	0.0				80		8°8°
ALANTAR ALANTAR				30				
A-AMINOADIPIC ACLD	0.0	a.0				- G		
A-ANIND-N-RUTYRIC A	9.0	0.0	26.6	0.9	8.0	0.7	6. •(
VAL INE	3.2.0	21.4	19.2	8-8	18.1	0.0	30.8	44.0
CASTINE	40.1	30.6	5°6°	9-9	.	0.0	24.8	32.6
METHIONINE	21.9	10 ° 10 FT	13.7	0-0	100 T	0.0	72.0	82.2
ISOLEUCINE	49.2	51.6	26.9	8.0	257.2	0.0	57.6	47.5
LEUGINE	2 2 2 2		a .	8 ° C	69.2	0°5	96.5	8° 88
	6.28	24.42	22.9	2 * 8	204.3	a -	2"6LV	121.5
PHENTLALAMINC	11 * A	62.3	35.5	8.0	219.2	a • c	247.6	84°38
UET A-AL ANINE	1.7	3.0	0,0	9 - 9	6-8	0.0	0,0	8.9
B-ANIMOISOBUTYRIC A	1.501	<u> </u>	70.3	0.0	169.6	0°0	224.22	85,6
DRWATHINE	54.3.7	140.3	603.5	0 * 0	316.2	7.0	202 205	5**22
A-HETHVL HISTIDINE	¥ • 17 M	43.2	234.9	0.0	127.4	0,0	100.1	₹°48
TASING	258.5	68°8	1229.1	0-0	108.0	0°0	110.5	07.2
MASTADIME	205.1	2.06	2690.3		1477.3	0-6	6-06-9	6.42.4
A-METNYL MISTIDINE	161.6	36.2	364.7	8 * 8	326.2	0.0	3994.2	147.7
ARGININE	4.7	10.5	58.5	0-0	0.0	0.0	50.6	95.6

USUAL VALUE FOR THE DIFFERENT AGE CATEGORIES Expressed in Micro Holes/Gram Greatinie

Fig. 4. Computer output: Sample statistics.

RANGE, 40R- 2.5		DILU	TION FACTOR	20.0	NUMBER OF	STANDARDS	\$* ° 0			
ANING ACID	PEAK No.	CON	FIRST Standard Ret tine	FIRST Standard Peak Area	second Standard Ret tine	second Standard Feak area	AVERAGE Ret tine	cort. Of Variance	AVERAGE Peak area	coef. Df Vartance
·										
PHOSPHOSERINE	41	1.16	ጭ ሌ	123311	29	127509	29°0	.014	129410.0	.130
PHOSPHOEFHANOLANINE	~	1.25	9	111599	04 4	137902	4 0 .0	.016	124750.5	139
TAURINE	м	1.16	17	121818	04	141964	47.5	.012	131691.0	
ASPARTIC ACIO	2	2.32	90	254233	26	327767	91.0	.012	200980.0	151
THREDURNE	5	20.00	36	236105	200	265913	99.0	.019	251049.0	122
SERINE	9	20.32	103	254072	102	385540	6° 180 0	.016	279915.5	a 1.716
ASPARAGINE	~	1.15	109	112516	214	154.1.3	112.9	.010	13131 4.5	. C.1 &
PROLINE	6	N. 32	130	59922	926	M6763	3 3 8 a 8	.009	53342.5	190-
GLUTANIG ACID	c	2 . 42	191	00040 X	249	309764	265.0	.010.	271920.5	598°
GITRULINE	30	- 20	150	02100	150	49608¥	154°0	.027	97923.5	.205
GLYCINE	11	2.32	163	000000	370	010000	166.5	189.	245366.9	5 4 3 °
ALAMINE	ي. ج	2.32	272	9559336	279	13197A	175.0	.010.	291154.5	893°
A-AMINGADIPIC ACID	57 54	.30	101	6664G	191	128467	186.0	.015	94553.5	. 324
A-AMINO-N-BUTYRIC A	₹.	8. JA	193	206923	202	203805	298°D	.027	307986.0	054 ~
VALINE	4 5	2.32	246	80000 X	227	509G26	221.5	.017	392629.0	. A76.
CVSTINE CVSTINE	36	1.10	226	5656P	246	52539 0	236.9	1260	169979.5	A58.
METHEOMINE	A 7	32.32	266	2655FF	266	701102	266°0	500.	340367.0	. 822
ISOLEUCINE	40	2.32	270	292551	272	242569	272.0	200"	317560.0	. 226
L.EUCKNE	19	2. 33	277	274401	270	Moore P	277.5	208°	305171.5	4224
TYROSINE	69 (v)	ې د 19	322	231562	212	0000000	312.0	10 0 0 °	310055.5	508°
PHENYLALANZME	29	2 32	319	236944	323	859628	329.0	500°	295185.5	. (195
DETA-ALANINE DETA-ALANINE	23	A . 16	555	70469	\$5 2	20562¥	222.5	. 606	123885.9	E54 -
B-AMINOISOGUTYRIC A	53	2.32	348	101106	542 143	309247	260°5	600*	245177.5	264X
OCHITHIRE	84 7	7 ° 32	398	294529	500	343646	398°0	. 883	326071.5	. 1280
A-HETHYL MISTADINE	52	2.422	414	239495	51 B	300676	444.5		27410G.0	N98 .
TYSINE	26	2.32	425	*****	425	016695	\$*60*	. 005	241932.0	. 1974.
MISTIDIME	27	2°32	504	200355	124 1	006022	いっちょう	• 8 8 4	31.3660.9	628,
3-RETHYL HISTIDINE	88 8	2.32	545	207371	446	23957.3	5 * 5 * 4 * * 5	* 88*	312972.8	600.
ARGANINE	63	2 . 32	556	333999	5 50	462010	80255	. 903	8°200052	. 223
AST INTERNAL STANDARD	_		0.00	222466	264	210932				
ZHO INTERNAL STANDAR	• ~		1	20262 <i>4</i>	828	100700x				
Fig. 6 Computer output	Ello -	vation .	etatietine							
when whitemer in Str		Wellow .	10-11-11110							

with retention times and peak areas of unidentified ninhydrin-positive components. Abnormal amino acid concentrations were identified and the factor by which they exceeded the mean plus two standard deviations was printed.

Other statistical information recovered included the number of normal patients accumulated in each age group with the mean values, and the total number of patients in each age group, with the mean concentrations for amino acid, as shown in Fig. 4. In addition, mean retention times and integrator responses for calibration standards (Fig. 5) were filed with their coefficient of variance for comparison with current standards.

DISCUSSION

Computer identification of amino acids eluted from a column is a formidable task, particularly when physiologic fluids are the source. This task is more reliably performed where technical interaction with the computer is possible. Our solution to this problem was the simplest approach consistent with reliable performance. Retention times were determined with each new buffer and ninhydrin preparation and the standard mixtures were analyzed again just before the buffer supply was exhausted. It was assumed that buffer (and ninhydrin) decay is a linear phenomenon and that averaging these standard retention times (and responses) would closely approximate the true values over a one-week period. A small variation in retention time, determined by the operator, was allowed. If an amino acid had a greater variation in retention time it would not be identified by the computer but would be printed out as an unidentified peak. The operator would, at his discretion, assign the proper retention time by manipulation of data while punching cards.

Another problem associated with amino acid analysis in an automated system is that of nonreproducible responses, whether through variations in sample application or ninhydrin reactivity. The use of internal standards was an effort to compensate for these effects, and since we used a two-column system, two internal standards were desirable. This program normalized the response of the unknown amino acids with that of the calibration standard since both had the same concentration of internal standard.

Although other programs, some of which are quite elaborate, have been published for identification and computation of amino acids, none analyze and present physiologic data in a format acceptable as a final report. It is our opinion that this is a desirable option which should be available to those who have access to computers of requisite capacity. Modification of the program by limiting the number of populations and thus the statistical data file could diminish this requirement, though not sufficiently for use with desk top calculators. Use of programmable calculators in amino acid analysis will be the subject of a future report.

ACKNOWLEDGEMENT

Supported in part by Genetics Center Grant No. GM 19513 from the National Institute of General Medical Sciences, National Institutes of Health.

REFERENCES

- 1 W. L. Porter and E. A. Talley, Anal. Chem., 36 (1964) 1692.
- 2 A. Yonda, D. L. Filmer, H. Pate, N. Alonzo and C. H. W. Hirs, Anal. Biochem., 10 (1965) 53.
- 3 M. T. Krichevsky, J. Schwartz and M. Maze, Anal. Biochem., 12 (1964) 94.
- 4 R. Taylor and M. G. Davies, Anal. Biochem., 51 (1973) 180.
- 5 H. L. Back, P. J. Buttery and K. Gregson, J. Chromatogr., 68 (1972) 103.
- 6 R. E. Exss, H. D. Hill and G. K. Summer, J. Chromatogr., 42 (1969) 442.
- 7 M. A. Fox, J. Chromatogr., 89 (1974) 61.
- 8 H. D. Spitz, G. Henyon and J. N. Sivertson, J. Chromatogr., 68 (1972) 111.
- 9 Eeckman Product Information Bulletin No. 9 for Liquid Chromatography, Beckman-Spinco, Palo Alto, Calif., November 20, 1970.